Nature of Code

Patrick Dwyer Fall 2005 patrick@digilutionary.com http://www.digilutionary.com/classes/nature

Class Hours

• Tuesdays 3:30pm - 6:00pm

Office Hours

- Tuesdays 2:00pm 3:00pm
- Thursdays 1:00pm 2:00pm
- · By appointment

Description

Can we capture the unpredictable evolutionary and emergent properties of nature in software? Can understanding the mathematical principles behind our physical world world help us to create digital worlds? This class will focus on the programming strategies and techniques behind computer simulations of natural systems. We'll explore topics ranging from basic mathematics and physics concepts to more advanced simulations of complex systems. Subjects covered will include forces, trigonometry, fractals, cellular automata, self-organization, and genetic algorithms. Examples will be demonstrated using the processing (http://www.processing.org) environment with a focus on object oriented programming.

Homework

Students are required to complete a programming exercise each week (assignments to be specified in the weekly handouts). The assignment's source code and accompanying applet should be uploaded to a web server and linked to from the Homework upload page.

Presentations

Each student is required to make a "research" presentation once during the course of the semester to supplement the material presented in class the previous week. 2-3 people should sign up for each week (and can present as a group or separately.) The format for the presentations is extremely open (feel free to think creatively here). They should be brief (10-20 minutes, longer for 3 people) and could include any of the following: information on related projects, live physics demonstrations, instructional videos, links to online sources and tutorials, book reviews, source code examples, diagrams, etc. You should include a link to documentation of your talk on the sign up wiki.

Part I: Motion	
Week 1 September 6 th	Class Introduction Class Overview Processing review Object Oriented Programming review Vectors - Basics of Motion (Acceleration & Velocity)
Week 2 September 13 th	Forces Attraction, Repulsion, Friction and Drag
	Readings Essential Mathematics for Games - Vectors pg. 12 - 37 Physics for Game Developers - Kinematics & Force pg. 25 - 68
	Resource GameDev - Math and Physics: http://www.gamedev.net/reference/list.asp?categoryid=28
Week 3 September 20 th	No More Random Numbers Understanding Probability Distribution of Random Numbers (Uniform, Non-Uniform, Normal) Perlin Noise
	Readings http://mathworld.wolfram.com/NormalDistribution.html http://mathworld.wolfram.com/UniformDistribution.html
	Resource Perlin Noise Tutorial: http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
Week 4 September 27 th	Making Waves Trigonometry Oscillations and Pendulum Graphing waves 2D trigonometry graphing
	 Readings Essential Mathematics for Games - Trigonometry Review pg. 623 - 633
Week 5 October 4 th	Particle Systems Advanced Object Oriented programming Inheritance and Polymorphism
	 Readings Physics for Game Developers - Kinetics & Particle Systems pg. 69 - 81, 271 - 284

Week 6	Review
October 11 th	
Part II: Life	
Week 7 October 18 th	Simple Rule-based Systems Recursion and Fractals 1D Cellular Automata - Wolfram Automata 2D Cellular Automata - Conway's Game of Life
	 Readings Computational Beauty of Nature - Fractals pg. 59 - 127 Computational Beauty of Nature - Cellular Automata pg. 231 - 258
Week 8 October 25 th	Autonomous Agents Steering Craig Reynold's Boids - Alignment, Cohesion and Separation
	 Readings Computational Beauty of Nature - Complex Systems pg 231 - 304
Week 9	Genetic Algorithms - Part I
November 1 st	 Readings Computation Beauty of Nature - Genetics and Evolution pg. 339 - 380
Week 10 November 8 th	Genetic Algorithms - Part II
	 Readings Computational Beauty of Nature - Genetics and Evolution pg. 383 - 424
Week 11 November 15 th	Propose Final Projects
Week 12 November 22 nd	Final Projects in Progress
Week 13 November 29 th	Final Projects in Progress
Week 14 December 6 th	Show Final Projects

Reading Materials

Readings for each week are listed in the syllabus. The readings are chosen from all of the course books; you are only required to read sections from *The Computation Beauty of Nature*, the remainder of the readings are suggested aides to the material for the week.

Required Materials

• The Computational Beauty of Nature, Gary William Flake

Suggested Materials

· Physics for Game Developers, David M. Bourg

Optional Materials

- Algorithmic Beauty of Plants, Przemyslaw Prusinkiewicz
- Essential Mathematics for Games & Interactive Applications, Verth, Bishop
- Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds (Complex Adaptive Systems), Mitchel Resnick
- Creative Code, John Maeda

Grading

Grades will be determined according to the following breakdown:

- Homework Assignments 50%
- Participation and Attendance 20%
- Final Project 30%