
Nature of Code
Patrick Dwyer
Fall 2005
Week 5 - October 4th

Particle Systems
A particle system is a collection of independent objects, often represented by a simple shape or dot. It can
be used to model many irregular types of natural phenomena, such as explosions, fire, smoke, sparks,
waterfalls, clouds, fog, petals, grass, bubbles, and so on. In a system, each particle will have its own set
of properties related to its behavior (for example, velocity, acceleration, etc.) as well as its look (for exam-
ple, color, shape, image, etc.). Particle Systems make it very easy to define the behavior of an object
once, and manage many instances of that object to create complex motion and simulations.

We are going to look at strategies for coding a particle system. How do we organize our code? Where do
we store information related to individual particles versus information related to the system as a whole?
The examples we'll look at focus on managing the data associated with a particle system. The examples
will use simple shapes for the particles and apply only the most basic behaviors (gravity, etc.). However,
by using this framework and building in more interesting ways to render the particles and compute behav-
iors, you can achieve lots of different effects.

The first thing we need to examine is the particle object. We need to create a class that defines the basic
elements of our particle and the properties it needs to simulate motion.

class Particle {

 /*
 The way each of our particles work is
 familiar from the basic forces;
 location, velocity and acceleration.
 */
 Vector3D loc;
 Vector3D vel;
 Vector3D accel;

 // Keep track of the size of our particle, and how long it's been
 // active
 float r;
 float timer;

This is nothing really new, just some variables to keep track of location, velocity, acceleration, and size.
This should remind you of our work so far with basic forces and motion. However, we are adding an im-
portant element, a timer to keep track of the particle's life. Our particles, sadly, will not live forever.

//function to update location
void simulate() {

 (1 of 9)

© 2005, Patrick Dwyer - Creative Commons Attribution-NonCommercial-ShareAlike

 vel.add(acc);
 loc.add(vel);
 timer -= 1.0;
}

We’ve modified our simulate method so that the timer counts down each cycle, as well as handling our
motion. The amount the timer counts at each step is hard coded here, and would probably be better as
a property of our particle, so we could better control how long each individual particle lives.

We also need to create a method for testing our particle to know if it is dead or alive. This method will
check the timer property, and return TRUE for a dead particle if the timer has gone below zero.

boolean isDead() {

 if (timer <= 0.0) {
 return true
 } else {
 return false;
 }
}

The remainder of the Particle class is similar to the other classes we’ve written; constructors, render
method, etc. We could easily take this Particle class as is, and create an array of Particle objects, using a
for loop to work with each one in our draw method. This has many limitations that we can address by go-
ing a step further, and writing a ParticleSystem class to control our particles for us; this will remove the
need for us to manipulate the individual particles, freeing us to create more interesting behavior with the
system as a whole.

Before we write our ParticleSystem class we need to investigate an alternative to our basic Arrays; a vari-
able length collection called ArrayList.

Resizable Arrays with ArrayList
Most of our examples up until now (with the exception of a few) have used standard java arrays to keep
track of ordered lists of information. We might have an array of 10 objects, looping through them each
cycle to update locations, render them, etc. However, in the case of a standard array we are limited to the
number of objects we initially created the array to hold; if we instantiated a 10 item array, it can only ever
hold 10 items. There are certainly alternatives (using a very large array and having a separate variable to
keep track of how much of the array we should use at any given time), but it would be much more useful if
we could dynamically size the array at run-time. In the case of a particle system, this will really help.

To accomplish our goal of having a resizable array, we will use the java class ArrayList, which can be
found in the java.util package.

The reference page is here: http://java.sun.com/j2se/1.4.2/docs/api/java/util/ArrayList.html.

Remember, this class comes from our Java libraries and is not part of the processing reference. The Ar-
rayList is immediately available for us to use in Processing, but in order to know how to use an ArrayList
object, we must consult the java API.

 (2 of 9)

© 2005, Patrick Dwyer - Creative Commons Attribution-NonCommercial-ShareAlike

Using an ArrayList is conceptually similar to a standard array, but the syntax will be quite different. Here is
some code (that assumes the existance of a class "Particle") demonstrating the same functionality, first
with an array, and second with an ArrayList.

int MAX = 10;

//declaring the array
Particle[] parray = new Particle[MAX];

//declaring the arraylist
ArrayList plist = new ArrayList();

//the following code you would usually find in setup
for (int i = 0; i < parray.length; i++) {
 parray[i] = new Particle();
}

for (int i = 0; i < MAX; i++) {
 plist.add(new Particle());
}

//the following code you would usually find in draw
for (int i = 0; i < parray.length; i++) {
 Particle p = parray[i];
 p.run();
 p.render();
}

for (int i = 0; i < plist.size(); i++) {
 Particle p = (Particle) plist.get(i);
 p.run();
 p.render();
}

Note that in this last for loop, we have to make sure to cast the object we pull out of the ArrayList. The
ArrayList doesn't keep track of the type for things stored inside -- it's our job to remind it!

Particle System Class
The main component of our ParticleSystem class will be an ArrayList to contain all of the particles in the
system. We will still need some additional properties to track the progress and state of the system, such
as the origin of the particle system, an image texture to draw for each particle, etc.

class ParticleSystem {

 // The list of particles

 (3 of 9)

© 2005, Patrick Dwyer - Creative Commons Attribution-NonCommercial-ShareAlike

 ArrayList particles;

 // The source of the particle system
 Vector3D origin;

 // The image we're using to draw our system
 PImage img;

 ParticleSystem(int num, Vector3D origin_, PImage img_) {

 // Set the particles array
 particles = new ArrayList();

 // Save the center of the simulation
 origin = origin_.copy();

 // save the rendering image
 img = img_;

 // Create all of the starting particles
 for (int i = 0; i < num; i++) {
 particles.add(new Particle(origin, img));
 }
 }

The next step is to write a method that calls methods on all the particles in the system. As we've seen
from how an ArrayList works, this is fairly simple:

void simulate() {
 for (int i = 0; i < particles.size(); i++) {

 // we need to cast the particle into its type
 Particle p = (Particle)particles.get(i);

 // Run the simulation
 p.simulate();
 }
}

However, while we cycle through each particle, we want to check and make sure the particle is still alive;
if it is not, we should remove it from the ArrayList. There is a problem here -- when an element is removed
at a specified position in this list, any subsequent elements are shifted to the left (i.e. one is subtracted
from their indices). This will result in skipping elements as they are deleted (if item N is deleted, item N+1
becomes item N and is not checked since the loop has already checked item N!) This is easily, solved,
however, by going through the ArrayList backwards.

 (4 of 9)

© 2005, Patrick Dwyer - Creative Commons Attribution-NonCommercial-ShareAlike

void simulate() {
 for (int i = particles.size() - 1; i >= 0; i--) {

 // we need to cast the particle into its type
 Particle p = (Particle)particles.get(i);

 // Run the simulation
 p.simulate();

 // Remove any dead particles
 if (p.isDead()) {
 particles.remove(i);
 }
 }
}

Finally, we can implement additional functionality to our system, such as methods that will birth new parti-
cles and a method that will test if the entire system itself is dead:

void addParticle() {
 particles.add(new Particle(origin));
}

void addParticle(Particle p) {
 particles.add(p);
}

boolean isDead() {
 if (particles.isEmpty()) {
 return true;
 } else {
 return false;
 }
}

Once we have finished implementing the particle class and the particle collection class, our main program
code is nice and elegant. We only have to declare a ParticleSystem as a global variable, call the con-
structor in setup() to instantiate it, and then call the run function in draw() (as well as choose to call
addParticle() whenever new particles should be created.)

ParticleSystem ps;

void setup() {
 size(400, 400);
 colorMode(RGB, 255, 255, 255, 100);

 (5 of 9)

© 2005, Patrick Dwyer - Creative Commons Attribution-NonCommercial-ShareAlike

 smooth();

 ps = new ParticleSystem(1, new Vector3D(width / 2, height / 2, 0));
}

void draw() {

 background(0);
 ps.simulate();
 ps.addParticle();
}

Inheritance
In the case of a particle system, we will often want to have systems containing different types of particles.
In order to accomplish this, we would like to avoid writing a new class for every single particle. A better
solution would be to create "subclasses" of our master particle class that could use the exiting data and
functionality of a regular particle, adding other features as necessary.

Object oriented programming allows us define classes in terms of other classes. In other words, a class
can be a subclass (aka "child") of a super class (aka "parent"). This concept is known as "inheritance."

Take this very typical example, where we have a class containing a few instance variables, a constructor
to fill them, and a method that increments the x and y variables randomly.

class Shape {
 float x;
 float y;
 float s;

 Shape(float x_, float y_, float s_) {
 x = x_;
 y = y_;
 s = s_;
 }

 void shake() {
 x += random(-1,1);
 y += random(-1,1);
 }
}

Now what if we create a subclass from Shape (let's call it Square). It will inherit all the instance variables
and methods from shape. We write a new constructor with the name Square, however, here we are exe-
cuting the code from the parent class by calling super.

class Square extends Shape {

 (6 of 9)

© 2005, Patrick Dwyer - Creative Commons Attribution-NonCommercial-ShareAlike

 //inherits all instance variables from parent
 //we could add variables for only Square here if we so

 Square(float x_, float y_, float s_) {
 super(x_,y_,s_);
 }

 //inherits shake method from parent

 //adds a new render method
 void render() {
 rectMode(CENTER);
 fill(255);
 noStroke();
 rect(x,y,s,s);
 }
}

Here is another subclass with some additional functionality. It adds an instance variable to keep track of
color (this is just to show how this is possible, most likely we would want the super class to include color).
It also calls the parent shake method (with super), but adds some additional code.

class Circle extends Shape {

 //inherits all instance variables from parent + adding one
 color c;

 Circle(float x_, float y_, float s_, color c_) {
 // call the parent constructor
 super(x_,y_,s_);
 c = c_;
 }

 //call the parent jiggle, but do some more stuff too
 void shake() {
 super.shake();
 s += random(-1,1);
 s = constrain(r,0,100);
 }

 // adds a new render method
 void render() {
 ellipseMode(CENTER);
 fill(c);

 (7 of 9)

© 2005, Patrick Dwyer - Creative Commons Attribution-NonCommercial-ShareAlike

 noStroke();
 ellipse(x,y,s,s);
 }
}

Polymorphism
Polymorphism (i.e. many forms) refers to the concept that we can treat an object instance in multiple
ways. A Circle is a Circle, but it is also a Shape so we can refer to it as either.

Shape c1 = new Circle(100,100,20,color(255));
Circle c2 = new Circle(100,100,20,color(255));

Both of the above lines of code are legal. Even though we declare c1 as a Shape, we're really making a
Circle object and storing it in the c1 reference. (We can safely call all the Shape methods on c1 b/c the
rules of inheritance dictate that a Circle can do anything a Shape can). At run-time, however, java will
determine that this object really truly is a Circle and run the proper methods. This becomes particularly
useful when we have an array. Here we can make an array of Shapes, put both Circles and Squares
into the array, but not have to worry about which are which -- that will all be taken care of for us!!

Shape[] s = new Shape[25];
for (int i = 0; i < s.length; i++) {
 int r = int(random(2));

 //randomly put either circles or squares in our array
 if (r == 0) {
 s[i] = new Circle(100,100,10,color(255,0,0));
 } else {
 s[i] = new Square(100,100,10);
 }
}

Later, we can run through the array with a for loop. Again, even though some of the elements are circles
and some are squares, we don't have to specify in our code since we can treat them all in the general
form as "shapes".

for (int i = 0; i < s.length; i++) {
 Shape ashape = s[i];
 ashape.jiggle();
 ashape.render();
}

For a much better explanation of polymorphism, please visit:
http://www.javaranch.com/campfire/StoryPoly.jsp

 (8 of 9)

© 2005, Patrick Dwyer - Creative Commons Attribution-NonCommercial-ShareAlike

Assignment
This week we continue the Two Week assignment from last week. Try and incorporate the techniques and
methods of using particle systems into your work from last week; extend the work you’ve done using
Polymorphism, Inheritance or Particle Systems.

Some ideas:

• Treat some part of your project as a particle and create a particle system around it. Particle Sys-
tems are an excellent way to create groups and collections of objects with individual behaviors.

• Use Inheritance and Polymorphism to alter some part of your code; create a few variations on an
object, each with unique behaviors or properties, that can all be treated as their parent object. If
you’re drawing objects on screen use Polymorphism to create different shapes or images that are
drawn to screen by different objects.

• How might you create a Particle System of Particle Systems? Note that the particles that make up a
particle system don’t have to behave only like we’ve created them here; they can do anything you
want.

 (9 of 9)

© 2005, Patrick Dwyer - Creative Commons Attribution-NonCommercial-ShareAlike

