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Fractals and Recursion
Benoit Mandelbrot coined the term fractal in 1975 to describe self-similar shapes achieved via the proc-
ess of recursion. Most of the stuff we encounter in our physical world can described by idealized geomet-
rical forms -- a postcard has a rectangular shape, a ping-pong ball is spherical, etc. However, many types 
of naturally occurring structures cannot be described by such simple means (snowflakes, trees, coast-
lines, mountains, etc.) Fractals allow us to describe and simulate these types of self-similar shapes (by 
"self-similar" we mean no matter how "zoomed out" or "zoomed in" we are, the shape ultimately appears 
the same.)

We know that a function can call another function. We do this all the time. But we can take this a step fur-
ther and create functions that call themselves. Functions that call themselves are called "recursive" and 
are appropriate for solving different types of problems. This occurs often in mathematical calculations; the 
most common example of this is computing a "factorial." The factorial of any number n, written n!, is de-
fined as:

n! = 1 * 2 * 3 * . . .* n

Where
0! = 1

We could write a normal (non-recursive) function to do this in processing:

int factorial(int n) {
 int result = 1;
 for (int i = 0; i < n; i++) {
  result = result * (i + 1);
 }
 return result;
}

While this would generate the correct answer, we can also define a factorial in a recursive manner:

n! = n * (n -1)!

Where
0! = 1

Here we’ve defined the result in terms of a recursion, or a self reference. The factorial of N is N times the 
factorial of N - 1. We can translate this to a function that accomplishes the same thing:

int factorial(int n) {
 if (n == 0) {
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  return 1;
 } else {
  return n * factorial(n - 1);
 }
}

We can apply the same principle of recursion to our visual environment. For instance, the following 
method:

void drawCircle(int x, int y, float radius) {
 ellipse(x, y, radius, radius);
 if (radius > 2) {
  drawCircle(x, y, radius * 0.75);
 }
}

What does this method do? It draws an ellipse based upon the parameters passed to the method, and 
then recursively calls itself with new parameters, based upon the values of the current method call. This 
example is somewhat trivial, as we could quite easily do the same thing with iteration (a for loop, for in-
stance), but there are situations where more complex behavior, such as a method calling itself multiple 
times, is more easily addressed with recursion. Consider the render method taken from the Recursive-
Tree example for this week (comments removed for brevity):

    public void render(float l_) {

        l_ = l_ * 0.66f;
        
        if (l_ > minLength) {
        
            pushMatrix();
            rotate(theta);
            line(0, 0, 0, -l_);
            translate(0, -l_);
            render(l_);
            popMatrix();
            
            pushMatrix();
            rotate(-theta);
            line(0, 0, 0, -l_);
            translate(0, -l_);
            render(l_);
            popMatrix();
            
        }    
    }
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This method uses the provided parameters to draw two branches, calling itself at the end of each branch. 
This kind of recursion would be much more complicated to mimic with a non-recursive solution. It is im-
portant to note here:

• All recursive functions must have an exit condition. This is similar to iteration; all of our for or 
while loops must have a boolean test that determines when the loop is finished. Without an exit 
condition recursive functions will quickly crash processing (and possibly the computer).

• When using recursion for drawing, the processing methods pushMatrix and popMatrix are ex-
tremely useful. When we call pushMatrix we save our current position and rotation so we can 
come back to it later. Once we call pushMatrix in our example, we proceed to recursively call our 
function. When the recursion finishes, we call popMatrix to return to our previous position. This 
lets us bypass a lot of tedious math for figuring out our drawing position every step of the way.

While recursion works well for some problems, others we can address using iteration and ArrayList. Con-
sider the following steps:

• Create an empty ArrayList

• Place a single object in the ArrayList

• For each object in the ArrayList, remove the object and add two new objects to the ArrayList based 
upon the removed object.

• Repeat the previous step as many times as desired

This series of steps can be used to create many types of recursive shapes, such as the Koch Fractal ex-
ample for this week.

L-Systems
Using the technique of recursion, we can create highly complex systems with a few simple rules. One of 
the best illustrations of this comes in the form of L-Systems. Similar in result to a recursive tree structure, 
L-Systems combine the complexity of recursion and the step by step process of iteration to generate 
“Tree” or “Plant” like visualizations.

To create an L-System, we first need to create our own programming language. This sounds quite a bit 
harder than it really is; our programming language will only define five operations:

• Draw a straight line

• Turn Left

• Turn Right

• Save our position

• Retrieve our position
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These five operations match the basic operations we need to create an L-System. Each L-System is de-
fined by an axiom and a rule. We can think of the axiom as a starting position, and the rule as the direc-
tions for drawing the system. A basic L-System might be defined with the following:

Axiom: F
Rule: FF-[-F+F]

The symbols may seem strange at first, but we can pair each of them with the five operations in our min-
programming language:

• F =>Draw a straight line

• + => Turn Left

• - => Turn Right

• [ => Save our position

• ] => Retrieve our position

So our basic L-System we defined has an Axiom that equates; “Draw a straight line”, while the rule 
equates; “Draw a straight line twice, turn right, save our position, turn right and draw a straight line, turn 
left and draw a straight line, and retrieve our position.” Following this rule won’t result in a very interesting 
drawing, just a long straight line with two shorter lines branching from the tip. The complexity of an L-
System derives from recursive application of the Rule to the Axiom.

We’ll define the current state of our L-System as our production, and initially we’ll set that equal to 
our Axiom (our starting condition). For each generation (application of the rule) we will simply replace 
every occurrence of the letter F with the rule, so our first two generations look like:

1: F
2: FF-[-F+F]

Seems simple enough so far, but take a look at the third generation:

3: FF-[-F+F] FF-[-F+F]-[-FF-[-F+F]+ FF-[-F+F]]

We can see that our production (current state of the L-System) quickly gets longer and more complicated. 
When we draw each different generation we find that what started as a simple line, or a short line with two 
branches, quickly becomes a highly complex series of branching and dividing lines. Thankfully drawing 
our L-System is easier than creating it, we just need to step through our production one character at a 
time, and follow the procedure we outlined in our programming language:

    public void render() {
        // start at the bottom center of the screen
        translate(width / 2, height);
          
        for (int i = 0; i < production.length(); i++) {
            char step = production.charAt(i);
            
            if (step == 'F') {
                // draw a line
                line(0, 0, 0, -drawLength);
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                // move to the end of the line
                translate(0, -drawLength);
            } else if (step == '+') {
                // rotate
                rotate(theta);
            } else if (step == '-') {
                // rotate
                rotate(-theta);
            } else if (step == '[') {
                // save our position
                pushMatrix();
            } else if (step == ']') {
                // reset our position
                popMatrix();
            }
        }
    }

L-Systems are a complex subject, dealing with recursion, Finite State Machines (our little programming 
language), and iteration, but they can yield amazing results.

Mandelbrot & Julia Sets
Building on the work we did with 2D Graphing, we can explore the strange territory of the Mandelbrot and 
Julia sets. These sets (also known as Fractals) are based on equations describing a series of complex 
numbers, where each number tends towards 0 or infinity as it is iterated over with a self-describing func-
tion. Thankfully we don’t need to fully understand the somewhat odd math behind these fractals to start 
drawing them.

Where our previous examples with 2D graphing used relatively simple equations to draw each point on 
the screen, these fractals use much more complex equations based upon recursion:

Zn+1 = Z2n + C
In our code we unroll this recursion into a controlled series of iterations over the fractal function. Depend-
ing on how many iterations we use, a different image will be generated. If you want to work with these 
fractals, explore the fractal example for this week.

Cellular Automata
"A cellular automaton is a collection of "colored" cells on a grid of specified shape that evolves through a 
number of discrete time steps according to a set of rules based on the states of neighboring cells. The 
rules are then applied iteratively for as many time steps as desired. von Neumann was one of the first 
people to consider such a model, and incorporated a cellular model into his "universal constructor." Cellu-
lar automata were studied in the early 1950s as a possible model for biological systems (Wolfram 2002, 
p. 48). Comprehensive studies of cellular automata have been performed by S. Wolfram starting in the 
1980s, and Wolfram's fundamental research in the field culminated in the publication of his book A New 
Kind of Science (Wolfram 2002) in which Wolfram presents a gigantic collection of results concerning 
automata, among which are a number of groundbreaking new discoveries."
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Eric W. Weisstein. "Cellular Automaton." From MathWorld--A Wolfram Web Resource. 
http://mathworld.wolfram.com/CellularAutomaton.html

In all of the examples we've looked at to date, our objects generally have existed in only one "state". They 
may move around with advanced behaviors/physics, but ultimately they have stayed the same type of 
object. More interesting results can be achieved by having entities that change/evolve over time. We ex-
amine cellular automata as our first example of a system of multiple objects with varying states. In the two 
examples below, each cell has one of two states (0 or 1, dead or alive, white or black, etc.). Researching 
further into CA systems, you might achieve varying results with multi-state systems as well as by applying 
the idea of "states" from CAs to systems of moving objects.

1D Automata
• The system exists as a row of cells (stored as an array of integers)

• Each cell (i.e. element in the array) is either "on" or "off", 0 or 1

• Each cell has two neighbors, one to the left and one to the right

• Each cell's state at time T+1 is determined by its own state and the state of its neighbors at time T. 
There are 8 possible combinations of a cell and its neighbors. A ruleset states what the new state 
will be based any given combination of a cell and it’s neighbors:

[Left Cell, Current Cell, Right Cell] => New Cell State

For example, we might use the following ruleset:

[0, 0, 0] => 0
[0, 0, 1] => 1
[0, 1, 0] => 0
[0, 1, 1] => 1
[1, 0, 0] => 1
[1, 0, 1] => 0
[1, 1, 0] => 1
[1, 1, 1] => 0

You can explore these in the 1D Automata example for this week.

2D Automata
In the above 1D case, a cell's state at time T+1 is computed as a function of its own state and its neigh-
bors' state at time T. The same is true for the 2D case, however, instead of a cell having only 2 neighbors, 
in two dimensions it will have 8 neighbors. In 1970, John Conway, building on the work on John von 
Neumann, developed the "Game of Life". The name refers to the fact that each cell is either alive or dead 
(in our code, again, represented as 0's and 1's.). The rules are as follows:

• Loneliness: If a cell is alive and has less than 2 live neighbors, it dies.

• Overpopulation: If a cell is alive and has more than 3 live neighbors, it dies.

• Reproduction: If a cell is dead, and it has exactly 3 live neighbors, it comes to life

• Statis: In all other cases, it stays as is.
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Assume we have a cell represented as an integer "cell", with a total number of alive 
neighbors represented as an integer "neighbors". We can write code for these rules as 
follows:

if ( (cell == 1) && (neighbors <  2) ) { 
 cell = 0;    
} else if ( (cell == 1) && (neighbors >  3) ) { 
 cell = 0;    
} else if ( (cell == 0) && (neighbors == 3) ) { 
 cell = 1;    
} else { 
 cell = cell; 
} 

For this to really work in code, however, we use a two-dimensional array to store information related to all 
the cells in the system.

2D Arrays
We know that an array keeps track of multiple pieces of information in a specific, linear order. However, 
the data associated with certain systems (a digital image, a board game, a "cellular automata") lives in 
two dimensions. To visualize this data, we need a multi-dimensional structure and we can do this by ex-
panding the idea of an array beyond one dimension.

A 2 dimensional array is really nothing more than an array of arrays (a 3 dimensional array is an array of 
arrays of arrays.). In other words, if a 1 dimensional array looks like:

int[] myArray = {0,1,2,3};

a two-dimensional array looks like this:

int[][] myArray = {{0,1,2,3},{3,2,1,0},{3,5,6,1},{3,8,3,4}};

For our purposes, we want to think of the 2D array as a matrix:

int[][] myArray = {  {0, 1, 2, 3},
                     {3, 2, 1, 0},
                     {3, 5, 6, 1},
                     {3, 8, 3, 4}  };

To walk through every element of a one-dimensional array, we use a for loop:

int[] myArray = new int[10];
for (int i = 0; i < myArray.length; i++) {
 myArray[i] = 0;
}

For an N-dimensional array, in order to reference every element we must use N-nested loops:

int COLS = 10;
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int ROWS = 10;
int[][] myArray = new int[COLS][ROWS];

for (int i = 0; i < COLS; i++) {
 for (int j = 0; j < ROWS; j++) {
  myArray[i][j] = 0;
 }
}

This should be familiar from our work with 2D graphing.

In the case of a 2D cellular automata, such as the "Game of Life", we need two 2D arrays. One stores the 
all the states at time T, and the other stores the states at time T+1. After each cycle of computing the next 
generation, the new system (T+1) becomes the old system (T), and we compute yet another new system 
(T+1).

The key to using two 2-dimensional arrays is storing the previous generation of the automata in one array, 
while storing the new state of the system in the other array. So we check every element in the array, count 
how many neighbors are alive, and apply the rules of life (Note, that this is a simplified version of the code 
used in the 2D Automata example for this week):

for (int x = 1; x < COLS-1;x++) {
 for (int y = 1; y < ROWS-1;y++) {

  int nb = 0;
  if (old_board[x-1][y-1] == 1)  { nb++; }    //top left
  if (old_board[x  ][y-1] == 1)  { nb++; }    //top
  if (old_board[x+1][y-1] == 1)  { nb++; }    //top right
  if (old_board[x-1][y  ] == 1)  { nb++; }    //left
  if (old_board[x+1][y  ] == 1)  { nb++; }    //right
  if (old_board[x-1][y+1] == 1)  { nb++; }    //bottom left
  if (old_board[x  ][y+1] == 1)  { nb++; }    //bottom
  if (old_board[x+1][y+1] == 1)  { nb++; }    //bottom right

  // The Rules
  if ( (old_board[x][y] == 1) && (nb <  2) ) { 
   new_board[x][y] = 0; 
  } else if ( (old_board[x][y] == 1) && (nb >  3) ) {
   new_board[x][y] = 0; 
  } else if ( (old_board[x][y] == 0) && (nb == 3) ) { 
   new_board[x][y] = 1; 
  } else { 
   new_board[x][y] = old_board[x][y]; 
  }
 }
}
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To make the system work we swap old and new after each cycle, so that new becomes 
old, and we can make a "new" generation:

int[][] tmp = old_board;
old_board = new_board;
new_board = tmp;

Assignment
• Develop your own recursive system to generate complex, fractal-like shapes. What are the parameters 

of your system? Can you make the recursive drawing an object with instance variables associated with 
those parameters?

• Read through Chapter 6 of “The Computational Beauty of Nature” on L-Systems. Can you develop 
code that goes beyond our basic Finite State Machine?

• Redo the Game of Life example with object oriented programming. Create a class for each individual 
cell as well as one for the whole system itself.

• What types of systems can you model with Cellular Automata? Consider allowing cells to have more 
than 2 states and develop your own rules for changing states.

• Examine the Predator/Prey System described on p. 191 of Computational Beauty of Nature. Can you 
use the principle of cellular automata to model and visualize it?

• Consider the state of a cell to be its color. What types of image processing filters can you create using 
the principles of Cellular Automata?
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