
Nature of Code
Patrick Dwyer
Fall 2005
Week 8 - October 25th

Individual Autonomous Agent Behavior
In the late 90s, Craig Reynolds developed algorithmic steering behaviors for animated characters. These
behaviors allowed individual elements to navigate their digital environments in a "life-like" manner with
strategies for seeking, fleeing, wandering, arriving, pursuing, evading, path following, obstacle avoiding,
and responding to their environment. Used in the case of a single autonomous agent, these behaviors are
fairly simple to understand and implement. By building a system of multiple characters, each steering ac-
cording to simple locally-based rules, surprising levels of complexity emerge, the most famous example
being Reynolds' boids model for flocking and swarming behavior.

We can't get anywhere with our simulation without first understanding the concept of a steering vector. In
the above examples, we have a Boid class which extends our earlier Particle class. This new object
has additional variables, such as a maximum speed and maximum steering force. It also has a method to
compute a steering vector towards a given target location.

Steering Vector = Desired Vector minus Velocity

Where desired vector is defined as the vector pointing from the object's location directly towards the tar-
get.

Our steer method receives a location vector (target) and returns a force vector (steer):

Vector3D steer(Vector3D target) {

 Vector3D steer;

 Vector3D desired = Vector3D.sub(target,loc);

 float d = desired.magnitude();

 if (d > 0) {

 desired.normalize();

 desired.mult(maxspeed);

 steer = Vector3D.sub(desired,vel);

 steer.limit(maxforce);

 } else {

 steer = new Vector3D(0,0);

 }

 return steer;
}

 (1 of 7)

© 2005, Patrick Dwyer - Creative Commons Attribution-NonCommercial-ShareAlike

Seeking
With the steer method figured out, we can now have a Boid object seek a given location. We calculate
the steering vector and store it in the object's acceleration.

void seek(Vector3D target) {

 accel = steer(target,false);
}

Reynolds' seeking example: http://www.red3d.com/cwr/steer/SeekFlee.html.

In our examples, however, we accumulate various steering forces (instead of simply setting acceleration
equal to one given steering vector.) Remember, when we do this, we must reset acceleration to a zero
vector at the end of each cycle, otherwise our acceleration spins out of control.

void update() {

 vel = vel.add(accel);

 vel.limit(maxspeed);

 loc = loc.add(vel);

 accel.setXYZ(0,0,0);
}

void seek(Vector3D target) {

 accel = accel.add(steer(target,false));
}

Arrival
Arrival can be achieved in a nearly identical fashion as seeking, only instead of pursuing a target at
maximum velocity, the object slows down as it approaches the destination. One solution for implementing
this behavior is to modify the steering vector calculation as follows (note in the above examples for this
week, the steering method receives a true or false flag to indicate whether it should apply the distance
based damping or not). Here, the magnitude of the desired vector shrinks as the object approaches the
destination. The full method with comments is available in the Boid.pde source file.

For a full explanation of "arrival", visit: http://www.red3d.com/cwr/steer/Arrival.html.

Vector3D steer(Vector3D target, boolean slowdown) {

 Vector3D steer;

 Vector3D desired = Vector3D.sub(target,loc);

 float d = desired.magnitude();

 if (d > 0) {

 desired.normalize();

 if ((slowdown) && (d < 100.0f)) {

 desired = desired.mult(maxspeed*(d/100.0f));

 } else {

 desired = desired.mult(maxspeed);

 }

 steer = Vector3D.sub(desired,vel);

 steer.limit(maxforce); //limit to maximum steering force

 (2 of 7)

© 2005, Patrick Dwyer - Creative Commons Attribution-NonCommercial-ShareAlike

 } else {

 steer = new Vector3D(0,0);

 }

 return steer;
}

Wandering
Reynolds' method for wandering is a bit more complex. It involves steering towards a random point on a
circle projected at a given length in front of the the object. Normally, we think of wandering as applying a
random steering vector each frame of animation. Reynolds solution is more sophisticated as it imple-
ments an ordered wandering where the steering at one moment is related to the previous one (note the
conceptual similarity here to what Perlin noise achieves for us).

For a full explanation, visit: http://www.red3d.com/cwr/steer/Wander.html.

Here is our implementation of the wander algorithm:

 public void wander() {
 // Radius of the circle
 float wanderRadius = 40.0f;

 // Distance the cirlce is offset from the boid
 float wanderDistance = 80.0f;

 // Range in which our wanderTheta can change each time
 float wanderChange = 0.5f;

 // Adjust our wanderTheta
 wanderTheta += random(-wanderChange, wanderChange);

 // start with a copy of the boid velocity
 Vector3D circleLoc = vel.copy();

 // normalize and scale to the wanderDistance offset
 circleLoc.normalize();
 circleLoc = circleLoc.multiply(wanderDistance);

 // position it relative to the boid location
 circleLoc.add(loc);

 // Figure out the wander circle heading
 float actualTheta = wanderTheta + vel.heading2D();

 // Determine the vector showing the offset of the point on the circle
 Vector3D circleOffset = new Vector3D(wanderRadius * cos(actualTheta),

 wanderRadius * sin(actualTheta), 0);

 (3 of 7)

© 2005, Patrick Dwyer - Creative Commons Attribution-NonCommercial-ShareAlike

 // figure out the target position of the wander point
 Vector3D target = Vector3D.add(circleLoc, circleOffset);

 // get our acceleration towards our wander point
 accel = accel.add(steer(target, false));
 }

Group Behavior
Once we've mastered control over a single object navigating its environment, we can begin to experiment
with a group of autonomous agents, each steering according to the relative positions and velocities of its
neighbors. Our example will be Reynolds' rules for flocking Boids, implementing the following three rules:

• Separation: Determine if you are too close to any other boids. If you are then adjust your direction
to avoid collision and clumping.

• Alignment:. Take the average of all the other boids’ velocities and adjust your velocity to move in
the general direction of the flock.

• Cohesion: Compute the center of the entire flock and steer towards the center.

To implement this we can use our ParticleSystem classes as a base, but restructure slightly. In this case,
each boid not only needs to know about itself individually, but it needs to know about all the other boids
as well. We can accomplish this by passing the ArrayList of all boids through as an argument to an
individual boids' simulate method:

class FlockSystem extends ParticleSystem {

 public FlockSystem() {

 super();

 }

 public void simulate() {

 for (int i = 0; i < particles.size(); i++) {

 Boid b = (Boid)particles.get(i);

 b.simulate(particles);

 }

 }
}

Once each individual boid (particle) knows about the whole list of boids it can perform calculations based
on it, such as compute the average velocity of all particles, center of all particles, check for its neighbors,
etc. For example, consider this method built into the boid class itself:

public Vector3D cohesion(ArrayList boids) {

 float neighborRange = 100.0f;

 Vector3D sum = new Vector3D(0, 0, 0);

 (4 of 7)

© 2005, Patrick Dwyer - Creative Commons Attribution-NonCommercial-ShareAlike

 int count = 0;

 for (int i = 0; i < boids.size(); i++) {

 Boid other = (Boid)boids.get(i);

 float d = Vector3D.distance(loc, other.loc);

 if ((d > 0) && (d < neighborRange)) {

 sum = sum.add(other.loc);

 count++;

 }

 }

 if (count > 0) {

 sum = sum.divide((float)count);

 return steer(sum, false);

 }

 return sum;
 }

In the above we code, we perform the following algorithm:

• Compute the sum of all locations of all boids within 100 pixels

• Compute the average location (i.e. divide by total neighboring boids)

• Compute the steering vector towards the average location

Using the above method, along with two additional similar ones for separation and alignment, we now
have all the elements for flocking, i.e. take the results of the three rules, weight them appropriately, and
accumulate them together in the object's acceleration.

public void flock(ArrayList boids) {

 Vector3D sep = separate(boids);

 Vector3D ali = align(boids);

 Vector3D coh = cohesion(boids);

 sep = sep.multiply(10.0f);

 ali = ali.multiply(1.0f);

 coh = coh.multiply(2.0f);

 accel = accel.add(sep);

 accel = accel.add(ali);

 accel = accel.add(coh);
}

 (5 of 7)

© 2005, Patrick Dwyer - Creative Commons Attribution-NonCommercial-ShareAlike

Resources
Craig Reynolds: http://www.red3d.com/cwr/

• Steering Behaviors For Autonomous Characters: http://www.red3d.com/cwr/steer/

• Boids Web Page: http://www.red3d.com/cwr/boids/

• Flocks, Herds, and Schools: A Distributed Behavioral Model, 1997 Siggraph Paper:
http://www.red3d.com/cwr/papers/1987/boids.html

Assignment
At this point in the semester you should be actively pursuing the topics we cover that are of interest to
you. Each week you should be working on either a small project, or creating prototypes of a project you
would like to pursue as your final project.

If you want to work with the Flocking examples, here are a few ideas:

• What other rules could you apply to Boids to guide their behavior?

• What could the flocking affect besides location of an object?

• What kinds of groups could you simulate by changing the flocking parameters of each individual
boid? Think about the following parameters that effect the boid:

• Distance to neighbors for calculations of cohesion and alignment

• Max Speed

• Max Acceleration

• Comfortability level (separation value)

• Containment area

 (6 of 7)

© 2005, Patrick Dwyer - Creative Commons Attribution-NonCommercial-ShareAlike

 (7 of 7)

© 2005, Patrick Dwyer - Creative Commons Attribution-NonCommercial-ShareAlike

